Regularity, Local and Microlocal Analysis in Theories of Generalized Functions
نویسنده
چکیده
We introduce a general context involving a presheaf A and a subpresheaf B of A. We show that all previously considered cases of local analysis of generalized functions (defined from duality or algebraic techniques) can be interpretated as the B-local analysis of sections of A. But the microlocal analysis of the sections of sheaves or presheaves under consideration is dissociated into a ”frequential microlocal analysis ” and into a ”microlocal asymptotic analysis”. The frequential microlocal analysis based on the Fourier transform leads to the study of propagation of singularities under only linear (including pseudodifferential) operators in the theories described here, but has been extended to some non linear cases in classical theories involving Sobolev techniques. The microlocal asymptotic analysis can inherit from the algebraic structure of B some good properties with respect to nonlinear operations.
منابع مشابه
2 Erick Herbin And
A lot is known about the Hölder regularity of stochastic processes, in particular in the case of Gaussian processes. Recently, a finer analysis of the local regularity of functions, termed 2-microlocal analysis, has been introduced in a de-terministic frame: through the computation of the so-called 2-microlocal frontier, it allows in particular to predict the evolution of regularity under the a...
متن کاملGeophysical modelling with Colombeau functions: Microlocal properties and Zygmund regularity
In global seismology Earth’s properties of fractal nature occur. Zygmund classes appear as the most appropriate and systematic way to measure this local fractality. For the purpose of seismic wave propagation, we model the Earth’s properties as Colombeau generalized functions. In one spatial dimension, we have a precise characterization of Zygmund regularity in Colombeau algebras. This is made ...
متن کاملElliptic regularity and solvability for PDEs with Colombeau coefficients
The paper addresses questions of existence and regularity of solutions to linear partial differential equations whose coefficients are generalized functions or generalized constants in the sense of Colombeau. We introduce various new notions of ellipticity and hypoellipticity, study their interrelation, and give a number of new examples and counterexamples. Using the concept of G∞-regularity of...
متن کاملElliptic regularity and solvability for partial differential equations with Colombeau coefficients
The paper addresses questions of existence and regularity of solutions to linear partial differential equations whose coefficients are generalized functions or generalized constants in the sense of Colombeau. We introduce various new notions of ellipticity and hypoellipticity, study their interrelation, and give a number of new examples and counterexamples. Using the concept of G∞-regularity of...
متن کاملSome directional microlocal classes defined using wavelet transforms
In this short paper we discuss how the position scale half-space ofwavelet analysis may be cut into different regions. We discuss conditions under which they are independent in the sense that the Töplitz operators associated with their characteristic functions commute modulo smoothing operators. This shall be used to define microlocal classes of distributions having a well defined behavior alon...
متن کامل